Homework 3 Geometry

Joshua Ruiter

April 8, 2018

Proposition 0.1 (Exercise 2-3b). The antipodal map $\alpha: S^n \to S^n$ given by $x \mapsto -x$ is smooth.

Proof. We need to show that for every $p \in S^n$, there exist smooth charts (U, ϕ) and (V, ψ) with $p \in U$, $\alpha(p) \in V$, $\alpha(U) \subset V$, and $\psi \circ \alpha \circ \phi^{-1} : \phi(U) \to \psi(V)$ smooth.

Let $x=(x^1,\ldots x^{n+1})\in S^n\subset \mathbb{R}^{n+1}$. Then $x^i\neq 0$ for some i, so $x\in U_i^+$ or $x\in U_i^-$ (where $U_i^+=\{x\in S^n: x^i>0\}$ and U_i^- is analogous). Without loss of generality, suppose $x\in U_i^+$. Then $\alpha(x)=-x\in U_i^-$, and $\alpha(U_i^+)=U_i^-$, so in particular the inclusion $\alpha(U_i^+)\subset U_i^-$ is satisfied. Finally, we compute the composition $\phi_i^\pm\circ\alpha\circ(\phi_i^\pm)^{-1}:\phi_i^\pm(U_i^+)\to\phi_i^\pm(U_i^-)$. Let $u=(u^1,\ldots u^n)\in\phi_i^\pm(U_i^+)$.

$$\begin{split} \phi_i^{\pm} \circ \alpha \circ (\phi_i^{\pm})^{-1}(u^1, \dots u^n) &= \phi_i^{\pm} \circ \alpha(u^1, \dots u^{i-1}, \sqrt{1 - |u|^2}, u^i, \dots u^n) \\ &= \phi_i^{\pm}(-u^1, \dots - u^{i-1}, -\sqrt{1 - |u|^2} - u^i, \dots, -u^n) \\ &= (-u^1, \dots, -u^{i-1}, -u^i, \dots, -u^n) \\ &= -u \end{split}$$

and thus this composition is smooth, hence α is smooth.

Proposition 0.2 (Exercise 2-6). Let $P: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{R}^{k+1} \setminus \{0\}$ be smooth, and suppose that there exists $d \in \mathbb{Z}$ such that $P(\lambda x) = \lambda^d P(x)$ for all $\lambda \in \mathbb{R} \setminus \{0\}, x \in \mathbb{R}^{n+1} \setminus \{0\}$. Then $\tilde{P}: \mathbb{RP}^n \to \mathbb{RP}^k$ given by $[x] \mapsto [P(x)]$ is well-defined and smooth.

Proof. To show that \tilde{P} is well-defined, we need to show that $[x] = [y] \implies \tilde{P}[x] = \tilde{P}[y]$. Suppose [x] = [y]. Then $y = \lambda x$ for some $\lambda \in \mathbb{R} \setminus \{0\}$. Then

$$\tilde{P}[y] = [P(y)] = [P(\lambda x)] = [\lambda^d P(x)] = [P(x)] = \tilde{P}[x]$$

thus \tilde{P} is well-defined. Now we show that \tilde{P} is smooth.

Let $[x] \in \mathbb{RP}^n$ and fix $x \in \mathbb{R}^{n+1} \setminus \{0\}$. Let $\pi_n : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{RP}^n$ be the standard projection $x \mapsto [x]$. Then set

$$\tilde{U}_i = \{ y \in \mathbb{R}^{n+1} \setminus \{0\} | y^i \neq 0 \}$$

$$U_i = \pi_n(\tilde{U}_i)$$

Since $x \in \mathbb{R}^{n+1} \setminus \{0\}$, we have $x^i \neq 0$ for some i, so $x \in \tilde{U}_i$ and $[x] \in U_i$. Since \tilde{U}_i is a saturated open set, U_i is an open neighborhood of [x]. Set

$$\tilde{V}_i = P(\tilde{U}_i) = \{ y \in \mathbb{R}^{n+1} \setminus \{0\} | y^i \neq 0 \}$$

The second equality follows because P maps lines to lines. Then we set $V_i = \pi_k(\tilde{V}_i)$, and we have

$$V_i = \pi_k(\tilde{V}_i) = \pi_k \circ P(\tilde{U}_i) = \tilde{P} \circ \pi_n(\tilde{U}_i) = \tilde{P}(U_i)$$

Then $\tilde{P}([x]) \in V_i$ and $\tilde{P}(U_i) \subset V_i$, and V_i is open because \tilde{V}_i is a saturated open set. Define $\phi_i : U_i \to \mathbb{R}^n, \psi_i : V_i \to \mathbb{R}^n$ as in Example 1.5, as

$$\phi_i[x^1, \dots, x^{n+1}] = \left(\frac{x^1}{x^i}, \dots, \frac{x^{i-1}}{x^i}, \frac{x^{i+1}}{x^i}, \dots, \frac{x^{n+1}}{x^i}\right)$$

$$\psi_i[x^1, \dots, x^{k+1}] = \left(\frac{x^1}{x^i}, \dots, \frac{x^{i-1}}{x^i}, \frac{x^{i+1}}{x^i}, \dots, \frac{x^{k+1}}{x^i}\right)$$

We claim that $\psi_i \circ \tilde{P} \circ \phi_i^{-1} : \psi_i(V_i) \to \phi_i(U_i)$ is smooth. We compute

$$\psi_{i} \circ \tilde{P} \circ \phi_{i}^{-1}(u^{1}, \dots, u^{n}) = \psi_{i} \circ \tilde{P}([u^{1}, \dots, u^{i-1}, 1, u^{i}, \dots u^{n}])$$

$$= \psi_{i} \circ \tilde{P} \circ \pi_{n}(u^{1}, \dots, u^{i-1}, 1, u^{i}, \dots u^{n})$$

$$= \psi_{i} \circ \pi_{k} \circ P(u^{1}, \dots, u^{i-1}, 1, u^{i}, \dots u^{n})$$

Since ψ_i, π_k , and P are smooth, their composition is smooth.

Thus we have shown that for every $[x] \in \mathbb{RP}^n$, we have smooth charts $(U_i, \phi_i), (V_i, \psi_i)$ with $[x] \in U_i, \tilde{P}([x]) \in V_i, \tilde{P}(U_i) \subset V_i$, and $\psi_i \circ \tilde{P} \circ \phi_i^{-1} : \phi_i(U_i) \to \psi_i(V_i)$ smooth. Hence \tilde{P} is smooth.

As an assistance in keeping track of the argument, we provide the following commutative diagram:

$$\tilde{U}_{i} \longleftrightarrow \mathbb{R}^{n+1} \setminus \{0\} \xrightarrow{P} \mathbb{R}^{k+1} \setminus \{0\} \longleftrightarrow \tilde{V}_{i}$$

$$\downarrow^{\pi_{n}} \qquad \downarrow^{\pi_{n}} \qquad \downarrow^{\pi_{k}} \qquad \downarrow^{\pi_{k}}$$

$$U_{i} \longleftrightarrow \mathbb{RP}^{n} \xrightarrow{\tilde{P}} \mathbb{RP}^{k} \longleftrightarrow V_{i}$$

$$\downarrow^{\phi_{i}} \qquad \downarrow^{\psi_{i}}$$

$$\phi_{i}(U_{i}) \longleftrightarrow \mathbb{R}^{n} \qquad \mathbb{R}^{k} \longleftrightarrow \psi_{i}(V_{i})$$

Lemma 0.3 (for Exercise 2-7). Let M be a nonempty smooth n-manifold with or without boundary where $n \geq 1$. If $f_1, \ldots f_k \in C^{\infty}(M)$ such that $\operatorname{supp}(f_i) \neq \emptyset$ and $i \neq j \Longrightarrow \operatorname{supp}(f_i) \cap \operatorname{supp}(f_j) = \emptyset$, then $f_1, \ldots f_k$ are linearly independent.

Proof. Let $f_1, \ldots f_k$ be as described, and suppose that

$$\sum_{i=1}^{k} a^i f_i = 0$$

for some real scalars $a^1, \ldots a^k$. For each α , $\operatorname{supp}(f_{\alpha}) \neq \emptyset$, so there exists $x_{\alpha} \in \operatorname{supp}(f_{\alpha})$ with $f_{\alpha}(x_{\alpha}) \neq 0$. (If no such x_{α} exists, then $\operatorname{supp}(f_{\alpha})$ is the closure of the empty set, which is empty.) Then since the supports are disjoint, $x_{\alpha} \notin \operatorname{supp}(f_j)$ for $j \neq \alpha$, so $f_j(\alpha) = 0$ (for $j \neq \alpha$). Then

$$0 = \left(\sum_{i=1}^{k} a^{i} f_{i}\right)(x_{\alpha}) = \sum_{i=1}^{k} a^{i} f_{i}(x_{\alpha}) = a^{\alpha} f_{\alpha}(x_{\alpha})$$

Since $f_{\alpha}(x_{\alpha}) \neq 0$, this implies that $a^{\alpha} = 0$. Since α was arbitrary, this means that $a^{1} = \ldots = a^{k} = 0$, hence $f_{1}, \ldots f_{k}$ are linearly independent.

Proposition 0.4 (Exercise 2-7). Let M be a nonempty smooth n-manifold with or without boundary where $n \geq 1$. Then $C^{\infty}(M)$ is infinite dimensional.

Proof. Suppose $C^{\infty}(M)$ is finite dimensional with dimension k. M is nonempty, so there exists $p \in M$, and then there must exist a chart (U, ϕ) with $p \in U$ and $U \cong B(0, 1)$. So U is uncountable. Choose distinct points $x_1, \ldots x_{k+1} \in U$. Because M is Hausdorff, for each pair x_i, x_j with $i \neq j$ there exist open sets U_i^j, U_i^j with $x_i \in U_i, x_j \in U_j$, and $U_i^j \cap U_j^i = \emptyset$. Let

$$U_i = \cap_{j \neq i} U_i^j$$

Each U_i is a finite intersection of open sets, so U_i is open. Since $x_i \in U_i^j$ for each j, we have $x_i \in U_i$. Since $x_j \notin U_i^j$ for each j, $x_j \notin U_i$ unless i = j. Thus $U_1, \ldots U_{k+1}$ are pairwise disjoint open neighborhoods of $x_1, \ldots x_{k+1}$.

By Proposition 2.25, for each i there exists a smooth bump function f_i for $\{x_i\}$ supported on U_i . Thus we have smooth functions $f_1, \ldots f_{k+1}$ with nonempty disjoint supports, so by the previous lemma these are linearly independent. This contradicts the assumption that $C^{\infty}(M)$ has dimension k. Since k was arbitrary, this means that $C^{\infty}(M)$ cannot have any finite dimension, so it is infinite dimensional.

Proposition 0.5 (Exercise 2-10a). Let M, N be manifolds with C(M), C(N) being the respective algebras of continuous functions $M \to \mathbb{R}, N \to \mathbb{R}$. Let $F: M \to N$ be continuous, and define $F^*: C(N) \to C(M)$ by $f \mapsto f \circ F$. Then the map F^* is linear.

Proof. Let $a \in \mathbb{R}$, and $f, g \in C(N)$. Then

$$F^*(af + g)(x) = (af + g) \circ F(x)$$

$$= (af + g)(F(x))$$

$$= af(F(x)) + g(F(x))$$

$$= a(f \circ F)(x) + (g \circ F)(x)$$

$$= a(F^*(f))(x) + F^*(g)(x)$$

Thus $F^*(af + g) = aF^*(f) + F^*(g)$, so F^* is linear.

Lemma 0.6 (Exercise 2.3, needed for Exercise 2-10b). Let M be a smooth n-manifold, and suppose $f: M \to \mathbb{R}^k$ is a smooth function. Then $f \circ \phi^{-1}: \phi(U) \to \mathbb{R}^k$ is smooth for every smooth chart (U, ϕ) for M.

Proof. Let (U, ϕ) be a smooth chart for M, and let $p \in U$. Since f is smooth, there exists a chart (V_p, ψ_p) such that $p \in V_p$ and $f \circ \psi_p^{-1} : \psi_p(V_p) \to \mathbb{R}^n$ is smooth. Since $(U, \phi), (V_p, \psi_p)$ are smoothly compatible, the transition map $\psi_p \circ \phi^{-1} : \phi(U \cap V_p) \to \psi_p(U \cap V_p)$ is a diffeomorphism, that is, it is smooth. Then

$$(f \circ \psi_p^{-1}) \circ (\psi_p \circ \phi^{-1}) = f \circ \phi^{-1} : \phi(U \cap V_p) \to \mathbb{R}^k$$

Thus for every $\phi(p) \in \phi(U)$, there is a neighborhood $\phi(U \cap V_p)$ such that the restriction of $f \circ \phi^{-1}$ to this neighborhood is smooth. Hence $f \circ \phi^{-1}$ is smooth (using Proposition 2.6a). \square

Proposition 0.7 (Exercise 2-10b). Let M, N be smooth manifolds and $F: M \to N$. Let $F^*: C(N) \to C(M)$ be the induced map $f \mapsto f \circ F$. Then F is smooth iff $F^*(C^{\infty}(N)) \subset C^{\infty}(M)$.

Proof. First suppose that F is smooth. Then for $f \in C^{\infty}(N)$, f is smooth so $F^*(f) = f \circ F$ is a composition of smooth functions, so it is smooth. That is, $F^*(f) \in C^{\infty}(M)$.

Now suppose that $F^*(C^{\infty}(N)) \subset C^{\infty}(M)$. Let $x \in M$, and let $(\tilde{U}, \tilde{\phi})$ be a smooth chart with $x \in \tilde{U} \subset M$. We also have $F(x) \in N$, so let (V, ψ) be a smooth chart with $F(x) \subset V \subset N$. Then let $U = F^{-1}(V) \cap \tilde{U}$ and $\phi = \tilde{\phi}|_{U}$, so now we have a new chart (U, ϕ) with $F(U) \subset V$. Let n be the dimension of N, and let $\pi_i : \mathbb{R}^n \to \mathbb{R}$ be the projection $x \mapsto x^i$. Then $\pi_i \circ \psi : V \to \mathbb{R}$ is smooth, so by hypothesis,

$$F^*(\pi_i \circ \psi) = \pi_i \circ \psi \circ F$$

is smooth for each i. Then by the above lemma (Exercise 2.3),

$$\pi_i \circ \psi \circ F \circ \phi^{-1} : \phi(U) \to \mathbb{R}$$

is smooth for each i, so $\psi \circ F \circ \phi^{-1} : \phi(U) \to \psi(V)$ is smooth. Hence F is smooth (for every $x \in M$, we have a charts $(U, \phi), (V, \psi)$ with $x \in U, F(U) \subset V$, and $\psi \circ F \circ \phi^{-1}$ smooth). \square

Proposition 0.8 (Exercise 2-10c). Let M, N be smooth manifolds and let $F: M \to N$ be a homeomorphism. Define $F^*: C(N) \to C(M)$ by $f \mapsto f \circ F$. Then F is a diffeomorphism if and only if F^* restricts to an isomorphism from $C^{\infty}(N)$ to $C^{\infty}(M)$.

Proof. Suppose that F is a diffeomorphism. Since F is smooth, by part (b) we have $F^*(C^{\infty}(N)) \subset C^{\infty}(M)$. Since F^{-1} exists and is smooth, by part (b) we have $(F^{-1})^*(\mathbb{C}^{\infty}(M)) \subset C^{\infty}(N)$. Additionally,

$$((F^{-1})^* \circ F^*)(f) = (F^{-1})^*(f \circ F) = f \circ F \circ F^{-1} = f$$

$$(F^* \circ (F^{-1})^*)(f) = F^*(f \circ F^{-1}) = f \circ F^{-1} \circ F = f$$

so $(F^{-1})^* = (F^*)^{-1}$. Now we need to show that $F^*, (F^*)^{-1}$ are homomorphisms. Let $f, g \in C^{\infty}(N)$ and $h, k \in C^{\infty}(M)$.

$$F^*(fg) = (fg) \circ F = (f \circ F)(g \circ F) = F^*(f)F^*(g)$$
$$(F^*)^{-1}(hk) = (F^{-1})^*(hk) = (hk) \circ F^{-1} = (h \circ F^{-1})(k \circ F^{-1})$$
$$= (F^{-1})^*(h)(F^{-1})^*(k) = (F^*)^{-1}(h)(F^*)^{-1}(k)$$

Thus F^* , $(F^*)^{-1}$ are homomorphisms that are inverse to each other, thus both are isomorphisms.

Now suppose that F^* restricts to an isomorphism on from $C^{\infty}(N)$ to $C^{\infty}(M)$. By hypothesis, F is a homeomorphism, and by part (b), F is smooth, so to show that F is a diffeomorphism we just need to show that F^{-1} is smooth. As shown above, $(F^{-1})^* = (F^*)^{-1}$, and since $F^*(C\infty(N)) \subset C\infty(M)$, we have $(F^{-1})^*(C^{\infty}(M)) \subset C^{\infty}(N)$. Thus by part (b), F^{-1} is smooth. Hence F is a diffeomorphism.

Proposition 0.9 (Exercise 2-14). Let M be a smooth manifold with disjoint closed subsets A, B. There exists $f \in C^{\infty}(M)$ such that $0 \le f(x) \le 1$ for all $x \in M$ and $f^{-1}(0) = A$ and $f^{-1}(1) = B$.

Proof. By Theorem 2.29, there exist smooth, nonnegative functions f_A , f_B such that $f_A^{-1}(0) = A$ and $f_B^{-1}(0) = B$. Let $f: M \to \mathbb{R}$ be defined by

$$f(x) = \frac{f_A(x)}{f_A(x) + f_B(x)}$$

Note that the denominator is never zero, since A, B are disjoint, and f_A only vanishes on A and f_B only vanishes on B (and both are nonnegative). Thus this function is smooth, and nonnegative on M. It is also bounded by 0, 1 as $f_A \leq f_A + f_B$. In particular, for $a \in A, b \in B$,

$$f(a) = \frac{f_A(a)}{f_A(a) + f_B(a)} = \frac{0}{0 + f_B(a)} = 0$$
$$f(b) = \frac{f_A(b)}{f_A(b) + f_B(b)} = \frac{f_A(b)}{f_A(b) + 0} = 1$$

Note that for $x \notin A \cup B$, $f_A(x) \neq 0$ so $f(x) \neq 0$, and $f_B(x) \neq 0$ so $f(x) \neq 1$. Thus f is the required function.